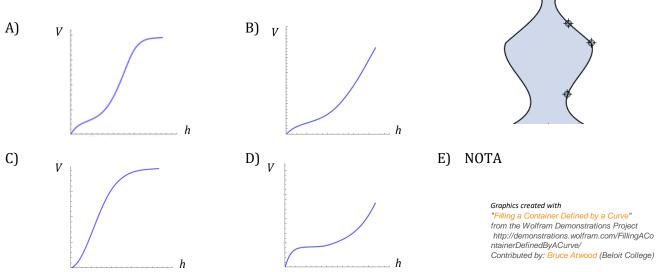

Mu Area and Volume


For all questions, answer choice "E. NOTA" mean "None of the Above" answers is correct. Unless otherwise stated, assume NO figures are drawn to scale and length measurements are given in units.

1.	Determine the area of the region bounded by $f(x) = 2x$ and $g(x) = x^2 - 3$.						
A)	32/3	C)	16/3		E)	NOTA	
B)	20/3	D)	8/3		2)	110 111	
5)	20/0	Dj	070				
2.	If the radius of a sphere is	increas	ing at the rate	of 2 inches per	secon	l, how fast, in cubic	
	inches per second, is the v	olume o	of the sphere ir	icreasing when	n the ra	dius is 20 inches?	
A)	160π	C)	1600π		E)	NOTA	
B)	320π	D)	3200π		-		
-		-					
3.	A sphere and a cube have			What is the r	atio of t	he volume of the	
	sphere to the volume of th	e cube?					
A)	$\pi/2$	C)	$\sqrt{3/\pi}$		E)	NOTA	
B)	$4\pi/3$	נת	$\sqrt{3/\pi}$ $\sqrt{6/\pi}$				
		DJ	$\sqrt{0/n}$				
4.	What is the area of the reg	tion in t	he plane betwe	en the graphs	of $v =$	\sqrt{x} and $y = -2x$	
	between $x = 1$ and $x =$		F	<u></u>)	··· ····· ·	
A)	31/3	C)	59/3		E)	NOTA	
B)	37/3	D)	65/3		2)		
,	- , -	,	/-				
5.	Given a graph of $f(x) = x^2$	² ⊥ 2 fi	nd the left-end	noint Rieman	1 SUM 11	sing five uniform	
5.	subintervals representing				i suili u		
		an app	oximation of j	40 t	. ——		
A)	103			40 1	/		
B)	65						
C)	38						
D)	27						
E)	NOTA			-3	+ 6 + 1		
				-10 ‡	а	n=5	
6.	What is the area of the sha	ded reg	gion in the figu	re below, whic	h is enc	losed by the <i>y</i> -axis,	
	$y = 2$, $x = 2\pi$, and the gra	-				-	
			2	2			
A)	$4\pi - 2$						
B)	$4\pi - \frac{\sqrt{3}}{2}$						

- B) $4\pi \frac{\sqrt{3}}{2}$
- C) $4\pi \frac{1}{2}$
- D) $4\pi 1$
- E) NOTA

7. The graphic below represents the profile of a circularly symmetric container which was initially empty, then gradually filled with fluid. Which of the following graphs best represents the volume *V* of fluid versus the height *h* of the fluid?

- 8. For what radius *r* of a sphere will the rate of change of the volume with respect to the radius be numerically equal to the rate of change of the surface area with respect to the radius?
- A)
 1
 C)
 3
 E)
 NOTA

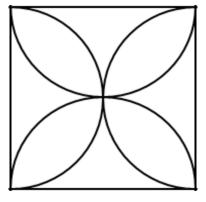
 B)
 2
 D)
 4
- 9. Let $f(x) = -(x 3)^2 + 2$ and g(x) = x 3 on [0, 4]. Determine which of the following integrals would find the volume of a solid generated by revolving the area between the two curves about the line y = -7.

A)
$$V = \pi \int_0^1 (g(x) - 7)^2 - (f(x) - 7)^2 \, dx + \pi \int_1^4 (f(x) - 7)^2 - (g(x) - 7)^2 \, dx$$

B)
$$V = \pi \int_0^1 (g(x) + 7)^2 - (f(x) + 7)^2 \, dx + \pi \int_1^4 (f(x) + 7)^2 - (g(x) + 7)^2 \, dx$$

C)
$$V = \pi \int_0^1 [(g(x) + 7) - (f(x) + 7)]^2 dx + \pi \int_1^4 [(f(x) + 7) - (g(x) + 7)]^2 dx$$

D)
$$V = \pi \int_{0}^{1} [(g(x) - 7) - (f(x) - 7)]^{2} dx + \pi \int_{0}^{4} [(f(x) - 7) - (g(x) - 7)]^{2} dx$$


- E) NOTA
- 10. The region enclosed by the graphs of $y = e^{x-2}$ and y = -x between the vertical lines x = 0 and x = 2 is rotated about the line y = -4. Which of the following gives the volume of the generated solid?
- A) $\pi \int_0^2 ((e^{x-2}-4)^2 (-x-4)^2) dx$ C) $\pi \int_0^2 ((e^{x-2})^2 (-x)^2 4^2) dx$

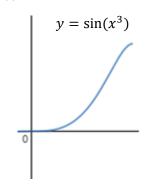
B)
$$\pi \int_0^2 ((e^{x-2}+4)^2 - (-x+4)^2) dx$$

- D) $\pi \int_{-2}^{e} ((\ln y 2)^2 (-y 4)^2) dx$
 - E) NOTA

11.	0 0	er of the of the sq						
A) B) C) D) E)	36 - $\sqrt{10}$ 36 - $2\sqrt{10}$ 30 32 NOTA				6			
12.	Find the area enclosed by the graph of $9x^2 + 36y^2 - 36x + 288y + 288 = 0$.							
A) B)	9π 18π	C) D)	24π 36π+15	E)	324			
13.	Find the area outside the graph of $ x + y = 3$ and inside the graph of $x^2 + y^2 = 9$.							
A) B)	9π 9π - 9	C) D)	9π - 18 36π+15	E)	324			
14.	The vertex of the parabola $y^2 - 4y - 5x + 19 = 0$ and the two foci of $9y^2 - 16x^2 - 36y - 32x - 124 = 0$ are the vertices of a triangle. Find the area enclosed by this triangle.							
A) B)	10 20	C) D)	30 40	E)	50			
15.	A pyramid has its base in the shape of a regular hexagon of side length 6. If the height of the pyramid is 15, find the volume of the pyramid.							
A) B)	250 270	C) D)	$270\sqrt{3}$ $540\sqrt{3}$	E)	$1620\sqrt{3}$			

- 16. A 4-petal flower, formed with 4 semicircular arcs, is inscribed in a square of side length 12. What is the area enclosed by the flower?
- A) $72(\pi 2)$
- B) $36(\pi 2)$
- C) $16(\pi 2)$
- D) $12(\pi 2)$
- E) NOTA

Mu Area and Volume 2018 MA@ National Convention								
17.								
	$y = x^3 + 1$, $x = 1$, and $y = 1$ about the <i>y</i> -axis.							
A)	8π/3	C)	3π/7		E)	NOTA		
B)	$4\pi/13$	D)	$2\pi/5$		ĽJ	NOTI		
,	,	,	,					
18.	Let the region bounded by cross sections built by equ circle to the other.							
A)	$36\sqrt{3}$	C)	$72\sqrt{3}$		E)	NOTA		
B)	$54\sqrt{3}$	D)	$80\sqrt{3}$					
19.	What is the largest possible volume of a rectangular box whose diagonal length is 15?							
A)	48 ^{3/2}	C)	$108^{3/2}$		E)	NOTA		
B)	75 ^{3/2}	D)	$120^{2/3}$					
20.	Find the area represented by the definite integral $\int_{-2}^{3} x^2 - x - 2 dx$.							
A)	-3/2	C)	49/6		E)	NOTA		
B)	31/6	D)	53/6		-			
21.	The area of the region bo	inded b	v the graph	s of equ	uations $v = 2x + $	1 and $y = x^2 - 2$		
	is a rational number whic							
	What is $a(b + a)$?	ii cuii be		reauce	^{3b} , 101			
A)	10	C)	25		E)	NOTA		
B)	15	D)	30					
22.	Find the dimensions of th	e rectan	gle of large	st area	that has its base	on the <i>x</i> -axis and its		
	Find the dimensions of the rectangle of largest area that has its base on the <i>x</i> -axis and its other two vertices above the <i>x</i> -axis and lying on the parabola $y = 9 - x^2$.							
	_							
A)	$2\sqrt{3} \times 6$	C)	$\sqrt{3} \times 8$		E)	NOTA		
B)	$\sqrt{3} \times 5$	D)	3×5					
23.	The area inside the polar equation $r = 3 \sin \theta$ and above the lines $y = x$ and $y = -x$ is given by							
	$\frac{\pi}{2}$			C	$9 \int_{0}^{3\pi/4} \sin^2 \theta$	10		
A)	$9\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\sin^2\thetad\theta$				$\frac{9}{2}\int_{\pi/4}^{3\pi/4}\sin^2\thetad$			
	$\frac{3\pi}{2}$			D)	$\frac{3}{2}\int_{-1}^{1}\sin^2\theta \ d\theta$)		
B)	$9\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}}\sin^2\theta \ d\theta$			E)	NOTA			
	-			-)				


Mu Area and Volume

2018 MA_O National Convention

- 24. Water is poured into a conical cup at a rate of $\frac{3}{4}$ cubic inches per second. If the cup is 6 inches tall and the top of the cup has a radius of 2 inches, how fast is the water level rising when the water is 4 inches deep?
- A) $\frac{3\pi}{8} \frac{in}{sec}$ C) $\frac{4\pi}{3} \frac{in}{sec}$ E) NOTA B) $\frac{3\pi}{2} \frac{in}{sec}$ D) $\frac{\pi}{4} \frac{in}{sec}$
- 25. A rectangle has two sides along the positive coordinate axes and its upper right hand corner point lies on the curve, $x^3 2xy^2 + y^3 1 = 0$. How fast is the area of the rectangle changing, in square units per second, as the point passes through the position (1, 2) if it is moving so that $\frac{dx}{dt} = 3$ units per second?
- A)
 39/4
 C)
 43/4
 E)
 NOTA

 B)
 63/8
 D)
 59/8
 59/8
- 26. Let A=(-5, 5), B=(1, 3), and C=(5, 3) be three points in the plane, forming triangle *ABC*. Find the volume of the solid obtained by revolving the triangle around the line containing the altitude from point A.
- A)
 80π C)
 48π E)
 NOTA

 B)
 64π D)
 24π
- 27. Let A(t) be the area under the curve, $y = \sin(x^3)$, $0 \le x \le t$. Let B(t) be the area of the triangle with vertices at (0, 0), (t, 0), and $(t, \sin(t^3))$. Find $\lim_{t \to 0^+} \frac{B(t)}{A(t)}$.
- A) 6
- B) 3
- C) 2
- D) 1/2
- E) NOTA

- 28. If the region underneath $y = \frac{8}{x^2}$ and above the *x*-axis for $x \ge 1$ is divided into two regions with equal areas by the line x = a, then a =
- A)
 8
 C)
 2
 E)
 NOTA

 B)
 4
 D)
 1
 1

Mu Area and Volume

2018 MA@ National Convention

- Find the area of the shaded region bounded by $r = 2 + \cos 2\theta$ and r = 2, as shown in the 29. figure below.
- A)
- B)
- C)
- D)
- $4 \frac{\pi}{8}$ $2 + \frac{\pi}{8}$ $2 \frac{\pi}{4}$ $4 \frac{\pi}{4}$ NOTA E)
- Find the volume of the solid obtained by revolving the curve $y = xe^{-x}$, $1 \le x < \infty$, around 30. the *x*-axis.
- $\frac{\pi}{2e^2}$ $\frac{5\pi}{4e^2}$ E) NOTA C) A) $\frac{3\pi}{2e}$ $\frac{5\pi}{4e^2}$ D) B)